Complex cytogenetic abnormalities in chronic myeloid leukemi
Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...
BCR-ABL1, resulting from t(9;22), is the oncogenic driver of chronic myeloid leukemia and the therapeutic target of the disease. Molecular studies have been the gold standard modality for patient assessment since the advent of tyrosine kinase inhibitor therapy. In spite of that, there are cytogenetic abnormalities that can render the disease unresponsive to conventional therapy, thus making cytogenetics an important component of patient management guidelines.

The patient was a 42-year-old man with no known medical illness who presented with lethargy, anorexia, pallor, and progressive abdominal distension that had developed over a duration of 4 months. On examination, the patient was pale, not in distress, and had no lymphadenopathy. His abdominal examination revealed gross splenomegaly crossing the midline with the liver just two finger breadths in the subcostal region.

His complete blood count revealed moderate anemia, thrombocytosis, and hyperleukocytosis, showing predominance of granulocytes with a bimodal peak of mature neutrophils (68%) and myelocytes (33%). The patient’s blast count was 4% with normal basophil count. The clinical impression at that time was CML in CP based on the initial clinical and hematological evaluation. The patient was counseled to proceed with cytogenetic analysis for confirmation and prognostication of disease, but, due to financial constraints, he opted to start on TKI therapy.

Accordingly, the patient was started on conventional imatinib therapy 400?mg/day. Initially, he responded well with resolution of hyperleukocytosis and improvement in hemoglobin and platelet count toward normal, but he did not achieve complete hematological remission. A repeated complete blood count analysis revealed moderate anemia, mild thrombocytopenia, and the presence of >90% blast cells in a total white cell count of 62,000/?l.

After detailed counseling, the patient agreed to proceed with cytogenetic analysis, in which the analyzed metaphases of all 20 cells revealed 45,XY, presence of Ph chromosome (9q34;22q11.2), and additional complex chromosomal abnormalities, including deletion of chromosomes 6q23.3 to q27, monosomy 11, monosomy 12, insertion 12p13.3, and a marker chromosome. Ultimately, the patient and his family were advised to proceed with allogeneic bone marrow transplant, considering the patient’s complex karyotype and nonresponsiveness to TKI therapy.

Source: https://jmedicalcasereports.biomedcentral.com/articles/10.1186/s13256-020-02539-x
Like
Comment
Share