Different dynamic structures of the SARS-CoV-2 spike protein
Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...
Get authentic, real-time news that helps you fight COVID-19 better.
Install PlexusMD App for doctors. It's free.
Now, a team of researchers at the Indian Institute of Science Education and Research (IISER) Kolkata has explained the different dynamic structures of the SARS-CoV-2 spike protein, which acts as the molecular machine that permits the entry of the novel coronavirus into cells.

The study, published in the Journal of Physical Chemistry Letters, highlights show their findings can help in formulating and developing effective vaccines against the virus, which has now infected more than 27.24 million people across the globe. One of the describing features of SARS-CoV-2 is the protein spikes that cover the surface, which the virus uses to bind with and enter human cells. Analyzing the structure of these spikes could provide clues about the virus’ evolution, and they can act as the key to the development of effective vaccines.

Most of the vaccines being developed across the globe, where some are now in the last phase of clinical evaluation, work in a basic code – revealing the body to the spike protein, which acts as protrusions seen on the outer surface of the virus, to trick the body into believing that it has been attacked by a pathogen, hence, inducing an immune response.

Since then, scientists study the three-dimensional structure of the spike protein, and they are learning about the spike protein and how they can target this part of the virus, which is the key to infecting cells. The spike protein of SARS-CoV-2 is a smart molecular machine that initiates the entry of the coronavirus into the cell, causing COVID-19. The researchers used a symmetry-information-loaded structure-based Hamiltonian, using recent Cryo-EM structural data to determine the conformational energy landscape of the perfusion spike protein. The team also explained that the stability of every biomolecular structure is controlled by a “free energy” parameter, which is essential in understanding how the molecule responds to its surroundings. The scientists described the free energy profile for the various structures of the SARS-CoV-2 spike protein.

Source: https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01431
Dr. R●●●l K●●l and 4 others like this2 shares
Like
Comment
Share