Predictive placenta: Use of AI to protect future pregnancies
Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...Now open: Certificate Course in Management of Covid-19 by Govt. Of Gujarat and PlexusMDKnow more...
A team of researchers from Carnegie Mellon University (CMU) and the University of Pittsburgh Medical Center (UPMC) report the development of a machine learning approach to examine placenta slides in the American Journal of Pathology, so more women can be informed of their health risks. One reason placentas are examined is to look for a type of blood vessel lesions called decidual vasculopathy (DV). These indicate the mother is at risk for preeclampsia—a complication that can be fatal to the mother and baby—in any future pregnancies. Once detected, preeclampsia can be treated, so there is considerable benefit from identifying at-risk mothers before symptoms appear. However, although there are hundreds of blood vessels in a single slide, only one diseased vessel is needed to indicate risk.

Machine learning works by "training" the computer to recognize certain features in data files. In this case, the data file is an image of a thin slice of a placenta sample. Researchers show the computer various images and indicate whether the placenta is diseased or healthy. After sufficient training, the computer is able to identify diseased lesions on its own.

It is quite difficult for a computer to simply look at a large picture and classify it, so the team introduced a novel approach through which the computer follows a series of steps to make the task more manageable. First, the computer detects all blood vessels in an image. Each blood vessel can then be considered individually, creating smaller data packets for analysis. The computer will then access each blood vessel and determine if it should be deemed diseased or healthy. At this stage, the algorithm also considers features of the pregnancy, such as gestational age, birth weight, and any conditions the mother might have. If there are any diseased blood vessels, then the picture—and therefore the placenta—is marked as diseased. The UPMC team provided the de-identified placenta images for training the algorithm.

"As healthcare increasingly embraces the role of artificial intelligence, it is important that doctors partner early on with computer scientists and engineers so that we can design and develop the right tools for the job to positively impact patient outcomes," noted co-author Liron Pantanowitz,

Source: https://ajp.amjpathol.org/article/S0002-9440(20)30337-0/fulltext#secsectitle0035
Dr. T●●●●z H●●●●●●i and 1 others like this
Like
Comment
Share