World's smallest MRI scan performed on single atoms
Using a new technique, scientists have performed the world's smallest magnetic resonance imaging to capture the magnetic fields of single atoms. It's an incredible breakthrough that could improve quantum research, as well as our understanding of the Universe on subatomic scales.

"I am very excited about these results," said physicist Andreas Heinrich of the Institute for Basic Sciences in Seoul. "It is certainly a milestone in our field and has very promising implications for future research."

The researchers used a scanning tunnelling microscope, an instrument that can image surfaces at the atomic scale by running an extremely fine needle over them.

This was used to probe carefully prepared titanium and iron atoms. With a small cluster of magnetised iron atoms attached to the tip, it became a tiny MRI machine, aligning the electrons - rather than the protons - in the sample.

All they needed to do then was add pulses of radiofrequency current, which allowed the sensors to detect the energy released by the electrons, producing an image of the magnetic field of a single titanium or iron atom.

"It's a really magnificent combination of imaging technologies," physicist Ahmed Duke Shereen of the Advanced Science Research Center in New York told The New York Times. "Medical MRIs can do great characterisation of samples, but not at this small scale."

Dr. A●●●●a T s●●●n and 21 others like this10 shares